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A modified Rosen-Zener calculation of surface-ion 
neutralization 

E J Robinson 
Department d Physics, New York University, 4 Washington Place, New York, NY 1wo3, 
USA 

R e u i i  3 Februaly 1992, m final form 16 October 1992 

A b s h t  We suggest WO d i f i e d  versions of the Rosa-Zener lheory of surface-ion 
neutralization. otiginally proposed ty Amos and his colleagues. In the first, we retain 
Ihe assumption of zem kmdwidlh, and use a more accurale form of the Rmen-Zener 
mujeclure. In the semnd, we also allow the band to b e  some width. 

The dynamics of surface-ion neutralization has been, and continues to be, a focus 
of considerable theoretical interest (Amos et uf (1989a) and references therein). In 
the analysis of this problem, one assumes that a fast ion moving in the vicinity of 
a surface captures an electron from a band of the solid. The process can occur 
even if the bound atomic level occupied by the electron in the final state does not 
exactly coincide in energy with any electron in the initial state of the solid, since 
compensation for energy defects can be provided by the kinetic energy of the atomic 
mass centre. The usual approach, which shall be followed here, is semiclassical-the 
ion moves along a rectilinear path at constant speed and generates a timedependent 
potential which interacts with the electrons. If the Fourier transform of this potential 
is appreciable at the energy difference between initial and final states, there will be 
a significant capture probability P,. For slow ions, P, will be negligible, unless the 
vacancy in the free atom coincides in energy with electrons in the band of the solid. 

One can see this effect most simply in first-order perturbation theory. Let U,,(t) 
be the time-dependent matrix element coupling a particular electron in the band of 
interest to the vacant ionic state. (We can evidently also look upon the process as 
the transfer of a hole from the ion to the surface.) The amplitude for the process is, 
in atomic units (which we use here and throughout the paper), 

where R,, R,, are the energies of the electron in the surface and atomic states, 
respectively. The integral on the right-hand side of equation (1) is the Fourier 
transform (FT) of the coupling potential. Only if the FT is appreciable at (a, -0") = 
6, will there be a significant transition probability. Thus, as noted, neutralization will 
_. 
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14 E J Robinson 

be negligible for slow ions unless the bound state lies wirhin the band of surface 
states. We will discuss the slow-ion case elsewhere. 

The identification of the first-order amplitude with the ET of the coupling puke is 
quite. general, ie., is not dependent on the temporal form of U,.,. This is fortunate, 
since, in realistic problems, this function is not normally known very well. In effect, 
the m becomes an unknown function to be inferred from experiment. 

Amos and co-workers (Amos er d 1986, 1989a, b) have devised a very clever way, 
based on the Rosen-Zener conjecture for two-level systems (Raseu and Zener lB2, 
Robiscoe 1978), to extend the first-order theory, with its single unknown function, to 
strong coupling, for cases where the width of the initial band may be considered to 
be zero. The purpase of this note is to modify their approach. 

Fit, we shall describe a way to further characterize the presumably unknown 
coupling function U,, by a parameter. Then, as a separate exercise, we shall 
demonstrate how one may modify the original result to allow for a non-zero, but 
small, width for the initial band. 

If the initial band is sufficiently narrow, one may proceed along the lines followed 
by Amas et d (1986)--treat the system as equivalent to one of two levels. We shall 
begin by reviewing the quantum mechanics of two-level problems. 

Let al,  a2 be the probability amplitudes of states [I) and 12). Instead of equation 
(l), we. must solve the fully-coupled timedependent SchrMinger equation 

da1 - - - -iUu(t)exp(i6t)a2 d t  

daz - - - -iUI2(t)exp(-i6t)al dt 

where now 6 = 0, - Q2 is the frequency separation of the two states. Equations (2) 
are to be integrated subject to the initial conditions a, = 1, a2 = 0, as t + -m. 
The desired transition amplitude is a2(+m). For the special case where U ( t )  is a 
hyperbolic secant (one of the few pulse shapes where exact solutions to the two-level 
problem are known), the form of the solution is extremely simple, namely 

a2(+m) = -iF(s)sinA (3) 

where A is the so-called ‘pulse area’, ie., the integral of U,, between t = hm, 
and F is the FT of U, divided by A. Since A F  is the approximation to a2 given 
by first-order perturbation theory, the probability amplitude is the product of two 
factors-its first-order approximant and (sin A ) / A .  In their original paper, Rosen 
and Zener (1932) surmised that the same form might hold for all smooth pulses, with 
the proviso that one replace F for the hyperbolic secant by the m of the actual pulse. 
If this conjezture were true, solving a given problem with two levels in perturbation 
theory would also generate the exact solution. Amos and co-workers (1986, 1989a, b) 
postulate the correctness of the assumption, and apply it to the ion neutralization 
problem. We shall develop their ideas further. 

Now the Rosen-Zener conjecture (Rzc) is Mlid for arbitrary pulse shapes if 
6 = 0. However, it is manifestly false for non-resonant coupling pulses that are 
asymmetric functions of the time. Bambini and Berman (1981) demonstrated this by 
constructing explicit solutions to a particular class of asymmetric-coupling problems, 
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and Robinson (1981) generalized their conclusion to arbitrary asymmetric shapes. In 
addition, the RZC is f a h  even for a symmetric pulse whose hur ie r  transform has a 
discontinuous derivative at 6 = 0 @binson 1984). On the other hand, the conjecture 
is approximately correct for symmetric codpling pulses whose Fourier transforms 
pcssess a derivative at 6 = 0 (Robinson 1984), provided that 6 is ‘small’. That is, it 
was shown for the symmetric pulses with differentiable Fr that 

a(+w)=-iF(6)sinA+O(8*)  (4) 

where F is the FT of the actual pulse, not necessarily a hyperbolic secant (Robinson 
1984). ‘Ihe work of Amos and colleagues seems eminently sensible in the light of 
equation (4). In fact, the agreement they obtained (Amos d al 1989b) between an 
exact calculation which modelled both pulse shape and state distribution within the 
valence band of the solid seems so good that an improved formulation might not 
be needed. We-proceed in order to allow for the possibility that the qualily of the 
agreement might ke worse in other cases. 

In the following, we assume that the indicated conditions (symmetric pulses with 
differentiable FT) for approximate validity of the RZ conjecture apply. 

One may obtain equation (4) from the infinite-product representation of the 
probability amplitude (Robinson 1985a, b). We summarize this formulation. An exact 
expression of “*(+CO) is given by 

az(+w) = - i A F ( & ) n ( l -  A ~ / A ~ , )  
N 

where A& is a ‘restoring eigenvalue.’ of the square of the pulse area (Robinson 
1981, 1984), Le., the squares of thase pulse areas for which the system is restored 
to its initially prepared state. The eigenvalues in a particular problem depend on 
the pulse shape and 6. In some sense, equation (4). which we emphasize is not 
an approximation is a generalization to arbitrary pulse shapes of the Rosen-Zener 
solution for the hyperbolic secant.. 

It can happen that there are pulse shapedetuning combinations for which none 
of the eigenvalues is real (for example, asymmetric pulses with 6 different from zero). 
'Ibis means that there are no physical pulses of the particular shape and 6 that can 
restore the system to its initially prepared condition. In such cases, not only is the 
R7.c not valid, but the chief qualitative property of the transition probability given by 
equation (3), that it oscillates with A and passes through zero an infinite number of 
times, is absent Fbr the hyperbolic secant, A 5  = ( independent of 6, while 
for other symmetric pulses with differentiable transforms, 

Equation (6) does not apply for large detunings, although there are scaling laws 
that are valid in that asymptotic regime (Robinson and Berman 1983) in some cases. 

We are now prepared to offer our first modification to the formulation of Amos 
et al. We shall use a result that is implied in previous work (Robinson 1984, 1985a), 
but which has not been made explicit 
_. 
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It has been shown, ria a variational calculation, that the quadratic correction term 
m equation (9 is approximately independent of the index N (Robinson 1984). Let 
us designate this comection by ( ~ a ) ~ ,  so that equation (6) becomes 

If the shape of the pulse is unknown, Q is a free parameter of the theory. Substituting 
the eigenvalues of equation (6) into equation (S), the infinite product is identified as 

This is an improved form of equation (4). Amos et QI also obtained an oscillatory 
result, but with the maxima occurring at the Rosen-Zener A = N r .  Here, in 
equation (7, the argument of the sinusoidal functions resembles that of a square 
pulse. In fact, equation (7) is a c t  for a square pulse, with Q = T/2 ,  where T is the 
duration of the interaction. Thus, contraly to the surmise of h e n  and Zener, the 
transition amplitude for a square pulse is given by an expression related to the RZ 
form! One does not require a smoothly varying pulse for the (approximate) validity 
of the modified form of the conjecture-rather the pulse must be symmetric in time, 
and be characterized by a differentiable m, Le., the smoothness requirement refers 
to the frequency domain, not the time domain. In effect, the transition amplitude for 
such a pulse will combine square-pulse and hyperbolic-secant characteristics. 

Now, in the present problem, neither the coupling strength nor the shape function 
is subject to the control of the experimenter. Since both F and Q depend on U, one 
may hope to infer the shape U empirically, by exploring the dependence of P,, on the 
normal component of ion velocity. Ebr example, one might guess a form for U and 
a value for A based on calculations performed in the Hattree-Fock approximation. 
With the assumed form, the parameter Q and the m F are determined. If the 
experimental transition probability is not a good fit to equation (7) with a particular 
F and Q, adjust the shape of the potential U, and continue until a good fit is obtained. 

Both the oscillatory result in equation (7) and the original form of Amos et ~l 
are consequences of the assumption that the valence band may be treated as a single 
level. In the opposite extreme, where the hand k broad, the oscillations will be greatly 
reduced or absent. 

It is also of interest to infer the form of the capture probability between the two 
extremes of infinite continuum and zero-width band. ’lb model the broadening of 12), 
we consider a two-level system in which the excited state decays exponentially to an 
unrelated continuum, not driven by the pulse. In this model, the only parameter is 
the decay width I?. The exponential time dependence implies that the shape function 
of the ‘band’ will be a Lorentzian. This is, of course, usually unphysical, but since 
we mainly desire to see the effect of non-zero width, this detail should not be too 
important. 

Since, in our picture of the problem, [a2) decays away, the probability of 
neutralization is given by 

P = 1 - [Q2(CO)lz (8) 
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and our task is to calculate al(oo). We shall proceed by writing a suitable expression 
for al that is wlid for zero width, and analytically continue it to the case where state 
12) decays. From equation (7), in the non-decaying limit, the modulus for finding the 
system in its initially prepared state k 

I[ 
[Az + ( ~ 6 ~ ) ]  sin'(a6) 

la1(+03)1= 1 - 

x 1- ( a F ( b ) a 6 / ~ ~ s i n  (a6))z]}1'z. (9) 

Thus, without loss of generality, we may write the snite-time initial state 
probability as 

al(oo) =exp(i4) cos AZ+(~a)2fi[l-AZF2(=6/sina6)2]/[A2+(6a)Z)]"2 {J-- 
x sin JG) 

d e r e  4 is a phase factor that mries with the pulse shape, detuning and area That 
the sine and cosine factors in this equation are ffl phase quadrature guarantees that it 
satisfies equation (9) and unitanty. However, unitarity alone does not fur the relative 
sign of the sine and cosine terms. We shall show how to remove the ambiguity in 
sign that is present in equation (10) later. At this point, we merely state the result 

x sin &Gz} . 

The exponential prefactor acquires a decaying part in the actual problem of interest, 
but we shall not have to determine it atplicitiy. 

The equations of motion for a two-level system with a decaying excited state may 
be written 
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Following Robiscoe (1978), we dehe  az = b,exp[-rt/Z]. 
equations (12) become 

a ,  = b,, so that 

- dbl = -i UI2( t )  exp[i(6 4- ir/2)t]bz 
dt 

- db, = -iU,,(t)eq[-i(b + iI'/Z)t]b,. 
dt  

Thus, insofar as the ground state amplitude is mncerned, the width of the excited 
state merely imparts an imaginary part to the detuning, and equation (ll), with 6 
complex, applies to this case. 

However, the presence of the factor arp(i+), with + unknown, makes it impassible 
to directly apply equation (11). Instead, we shall use that equation to write an 
expression for b, in terms of a certain set of eigenvalues, which are the squares of 
the roots of equation (11). The eigenvalue formulation will also enable us to deduce 
the relative signs of the sine and cosine terms in equation (10). 

It has previously been shown that this infinite product representation for b,, 
analogous to equation (S), &is (Robinson 1985b). In this case, we have 

b? = n(1- Az/A$). 
Q 

The A: are the squares of those. pulse areas that depopulate the initially prepared 
state. They depend on pulse shape and demning, and, like their restoring 
counterparts, need not be real. 

It is convenient to recall the origin of equation (14), which is exact. One may 
r&te equations (13) as uncoupled second-order differential quatiom, namely 

where 

and the 'compressed time' is 

The eigenvalues A$ are those squares of the pulse area for which 6 ,  = 1 at z = -f 
and vanishes at z = +& The A$ are also given in terms of the eigenfunctions b, 
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by 

112 

-112 
A$ = - J (bNbL - i(6/f)b)NbN) eacp(-i6t) d r  (16) 

where ' denotes differentiation with respect to rr and where the eigenfunctions are 
normalized according to 

The eigenvalues are, as noted, in general complex, whether or not 6 is real When 
6 = 0, the eigenvalues are given by [(N + $)TI', N = 0,1,2 ,..., and the 
eigenfunctionsby b,=&cos[(N+;)n(z+~)] .  

At this point, the sign ambiguity in equation (10) will be resolved. We recall 
that Rosen-Zener is a valid approximation for pulse shapes that are symmetric 
in the real and compressed times, t and z, provided f has a "ier transform 
that is differentiable at 6 = 0, With small detuning (Robinson 1984). Then, 
A$ = [(N + $ ) T ] ~  + g(S), where g is small. We shall expand the correction 
term 9 as a p e r  series in 6, and retain the leading non-vanishing term. Its sign will 
determine that of the sine and cosine terms in equation (10). 

We proceed by treating the term proportional to S in equation (16) as a 
perturbation. Then, A$l, the at-order correction to the zerodetuning eigenvalue, 
is given by 

A$, = J1I2 d r  bNb)N(i6/ f )  = -2i(N + 5). dz sin( N + ;)T( z + f) 
-112 

x m ( N  + ;,42 + $)/f 
= - i ( N + f ) ~ ~ l 1 2 d r 5 i n ( 2 N + 1 ) x ( t + f ) / f  112 

L2 112 
dz cos(2N + l)a(z)/f .  (18) = (-l)N+'i(N + i) 

The mine function in the final integrand of equation (18) undergoes (N 4- k) cycles 
between z = -z and z = +;, and, since f increases monotonically between z = -; 
and z = 0 for reasonable pulse shapes, the sign of the integral will be the same as 
that possessed by the integrand near its end points. That is, the first-order correction 
to the eigenvalue is proportional to -i In the particular case of the hyperbolic secant 
pulse, f = (sechxt/T)/T, the eigenvalues are given by 

1 

A$ =[(N+i) r - i6T/2I2 .  (19) 

The hyperbolic secant result is exceptional in that it is not restricted to the small 
detuning regime. 
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For small detunings, 

F = 1 - b26’ 

(a6/sina6)’= I + (a6)’/3 

,@/[Az +(as)’]  = 1 - (aS/A)’ 

so that equation (9) becomes 

where 

q’= (b2-a’ /3+a2/A2).  

We note that q2 must be real and non-negative in order that lull2 have the significance 
of a probability for arbitrary pulse areas. This can be achieved only if a2 < 3b2. 
Clearly, a’ cannot be negative, so that 0 < a2 6 3b2. Since a’ = 0 for the hyperbolic 
secant pulse, while a’ = 3b2 for the square pulse, we note that these two exactly 
solvable problems represent opposite limiting cases, and the ratio (alb)’ measures 
how closely a given pulse shape will approximate one of the extremes. 

Using the approximate form of equation (20), equation (10) becomes 

al(co) = q( i+) [ms(A + (a6)’/2A) & ibqsin(A + (a6)*/2A)]. (21) 

We must choose the sign in equation (20) so that its roots yield a sign that agrees 
with that of the small detuning eigenvalue determined previously. The probability 
amplitude given by equation (21) vanishes for pulse areas that are given by 

- mt(A + (a6)’/2A) = i6q (22) 

or 

- tan[(2N + 1)1~/2 - A - (a6)’/2A] = iSq = (2N + 1 ) ~ / 2  - A - (a6)’/2A 

(23) 

since the deviation from the zero-detuning-restoring eigenvalues is presumed to be 
small. In order that the eigenvalue shift be negative. imaginary for real positive 
detuning, it is necessary that we choose the negative sign in equation (20). P find 
the eigenvalues in cases where 12) decays, we must simply replace 6 by (6 + P/2) in 
the formula (23). 

Thus, the neutralition probability is given by 
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where the eigenvalues are computed for the complex detuning 6 + C/2. 
’ll~ see how the width modifies the character of the transition probability, we 

examine the case of the hyperbolic secant, f = sech(d/T). ’Ihe eigenvalues are 
given by 

A$ = [T( N + 1) + rT/4 - iST/2I2. (E) 

The transition probability is, retaining only corrections linear in 6, 

P, = sinzAsech2 6T/2 + [sinz(A) sech2(6T/2 - 1)][Re rT/2r(2$(  5 - i6T/2r) 

- $(f - i6T/2a - A / r )  - $($ - i6T/2 + A / r ) ) ]  (26) 

where 11 designates the digamma function. As compared to the case of zero 
bandwidth, equation (26) suggests an overall increase in the neutralization probability, 
on average, and an introduction of contributions that do not oscilla@ with puke area. 

Qualitatively similar behaviour is manifest for a rectangular pulse of duration T. 
Again retaining only terms linear in the width, we obtain, using the exact solution for 
the square pulse, the expression 

+ r136’/8[A2 + (ST)’] + (rT(1- (6T)’)/2(AZ + (ST)’)) 
x sin’ d-/4J). (27) 

’Ib summarize, we have proposed modified versions of the Rosen-Zener type 
result for fast ion neutralization, which had been originally proposed by Amos and 
his colleagues. In the first form, we retain their assumption of a zero-width band, 
and make use of a more general form of the RZ conjecture, which should yield 
higher accuracy. In this formula, the zeroes of the neutralization probability m r  at 
(Nr)’- instead of the ( N T ) ~  which characterize the hyperbolic secant. The 
parameter a is determined by the coupling pulse, so that no information beyond that 
required by Amos and colleagues is needed here. The oscillations predicted by Amos 
and co-workers appear in this calculation, but shifted. 

In addition to improving the accuracy of the method, we have also observed that 
our apprbach facilitates the parametrization of the driving pulse, and sets limits on 
the variation of the results. In addition to the constant a, there is a term containing 
a characteristic coefficient 6, defined as = 1 - p. In the small detuning limit, 
where the Rosen-Zener approximation is valid, the square pulse and hyperbolic secant 
represent opposite limits for the ratio ( ~ / b ) ~ .  Thus, one expects the behaviour of an 
arbitrary pulse to fall somewhere between the two. 

In our second modification, we allow the band from which the electron is extracted 
to have a non-zero width. This width becomes an additional parameter of the theory. 
Results are expressed in terms of an infinite product, whose mots are obtained by 
solving an equation that is trancendental in the Fourier transform of the driving 
puke, the parameter a, the detuning and the width. For the small detuning h i t ,  this 
equation reduces to a simple algebraic form, which may be solved explicitly. 
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